High impedance fault detection in power distribution networks using time–frequency transform and probabilistic neural network
نویسندگان
چکیده
An intelligent approach for high impedance fault (HIF) detection in power distribution feeders using advanced signal-processing techniques such as time–time and time–frequency transforms combined with neural network is presented. As the detection of HIFs is generally difficult by the conventional over-current relays, both time and frequency information are required to be extracted to detect and classify HIF from no fault (NF). In the proposed approach, Sand TT-transforms are used to extract time–frequency and time–time distributions of the HIF and NF signals, respectively. The features extracted using Sand TT-transforms are used to train and test the probabilistic neural network (PNN) for an accurate classification of HIF from NF. A qualitative comparison is made between the HIF classification results obtained from feed forward neural network and PNN with same features as inputs. As the combined signal-processing techniques and PNN take one cycle for HIF identification from the fault inception, the proposed approach was found to be the most suitable for HIF classification in power distribution networks with wide variations in operating conditions.
منابع مشابه
Detection of high impedance faults in distribution networks using Discrete Fourier Transform
In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملCross Entropy-Based High-Impedance Fault Detection Algorithm for Distribution Networks
The low fault current of high-impedance faults (HIFs) is one of the main challenges for the protection of distribution networks. The inability of conventional overcurrent relays in detecting these faults results in electric arc continuity that it causes the fire hazard and electric shock and poses a serious threat to human life and network equipment. This paper presents an HIF detection algori...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009